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ABSTRACTii

The effects of t~he diaphragm shape of a loudspeaker onj

the radiation and diffraction characteristics are discussed

using convex and ccncave domes in an infinite baffle. The

least square error method, one of the weighted residual

methods, is employed as the mathematical tool for the~

solution of the problems.

The results show that these characteristics are highly

dependent on the shape of the diaphragm, even if it vibrates

like a piston. The tesponse of the concave dome has a wide

peak due to the cavity resonance, resulting in higher

radiation efficiency. The can-- % dome has lower on-axis

pressure response in the same region due to the dispersion

of energy to the off-axis direction.

The diffraction of sound from a concentric ring source

by the convex and concave domes is also investigated in

order to diecuss the interaction between the loudspeaker

units of a complete system. The convex dome has much larger

diffraction effects than the concave dome, especially in the

high-frequency region. It is shown that even the concave

dome produces a discernible amount ti( amplitude distortion

of sound radiated from an adjacent source.

The radiation and diffraction phenomena are well

explained by the use of a graphical representation of the

energy flow and pressure distribution.
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CHAPTER I

INTRODUCTION

1.1 Background

The cone-type loudspeaker has been used since the birth

of the direct radiator loudspeaker. The reason for this is

the mechanical strength against Lhe force given through the

voice-coil due to its diaphragm shape. A paper cone,

because of its satisfacrory properties such as relatively

large Young's modulus-to-density ratio (E/pm) and high loss

factor, has been used as the main loudspeaker diaphragm of

the direct radiator loudspeýaker. But as far as paper being

used as a diaphragm material, E/P does not have enough
M

margin for us to try a flat or a very shallow diaphragm.

The situation has been changed, however, since

composite materials with large E/p i have come into use.

With these materials, it has become possible to try any kind

of diaphragm shape, even the flat diaphragm. At this point,

we natucally come to the question, "What is the best shape

for a radiator?" The diaphragm shape has effects on both

the vibration characteristics and the radiation

characteristics. These latter effects, however, have not

had much attention paid to them up until now. This is our

motivation to investigate the relation between the convex or

concave diaphragm in an infinite baffle and its radiation
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character i a tic as.

Other int'er.tsting phenomena are found in the

interactions between loudspeaker units in a loudspeaker

system. The sound emitted from a high-frequency unit is

diffracted by a (normally concave) low-frequency unit. This

effect causes the modification of the on- and off-axis

pressure responses of the high-frequency unit. This

diffraction is also zesponsible for an amplitude-modulated

distortion of the hig*i-frequency sound when the diaphragm of

the low-frequency unit vibrates with a large excursion.

These static and dynamic interactions between each unit of

the loudspeaker system are important topics that need

investigation if imrovements on loudspeaker design are to

he made. Another example of this kind of phenomenon is the

diffracLion of noise by a convex or a concave object on a

plane. The diffraction of noise wil' change the pressure

diatribution around the object, and if the noise source is

close to this object, it may also change the total radiated

power frcm the noise source. Thus, the diffraction of sound

from a source adjacent to a convex or a concave object in an

infinite baffle are of great interest.

1.2 Previous Studies

The radiation problems from convex and concave

objects are quite different from each other in the way they

are solved. The radiation from a convex object in an



3

infinite baffle is equivalent to the radiation from a

radiator with a symmetric radistor in the other semi-

infinite space. On the other hand, the radiation problem

from a concave dome in an infinite baffle must be solved in

a semi-infinite space. The studies on the radiation from a

radiator of finite size in an infinite space are reviewed

first.

The radiation from a complete sphere or spheroid is the

one to which the method of separation of variables is

applicable. The solution to this kind of problem is found

in many books such as [t]-[51. One of the interesting

researches in this field was achieved by Ikegaya (6]. As

one of his problems, he investigated the radiation from an

oblate spheroid, assuming that it can be well approximated

by a portion of a sphere in an infinite baffle. The results

show that the on-axis response is highly dependent on the

height-to-radius ratio. These results are compared with our

results later.

Three distinct methods of integral forms have been

reported to obtain numerical solutions of the problems of

acoustic radiation from an arbitrary body, the simple source

method, the surface Helmholtz integral equation, and the

internal Helmholtz integral equation. The simple source

method was employed by Chen and Schweikert [7], and

McCormick and Baron [8]. Chen and Schweikert, assuming a

distribution of simple sources over the radiator surface,

gave the formulation of the radiation problem from a shell



4

in an infinite medium. McCormick and Baron utilized dynamic

influence coefficients from the vibration in vacuum of thA

shell and a potertial source theory approach for the fluid

to discuss the radiation from a cylindrical shell of finite

length. Chertock [9] investigated the sound radiation from

a body of arbitrary shape using the surface elmholtz

integral equation. The third method was used by Copley

[10], who adopted the internal Relmholtz integral equation

which results when the field point lies within the surface

of the raliator. As Copley [111 and Schenck (12] pointed

out, however, the first two methods fail to provide unique

solutions when the frequency is approximately equal to any

of the characteristic frequencies. Schenck, showing that

the third method is subject to similar difficulties and has

undesirable computational characteristic, proposed a

modified Helmholtz integral equation formulation in the same

paper.

A quite different approach was applied on the radiation

problem from a finite cylinder by Williams, Parke, Moran,

and Sherman [131. They expressed the pressure field in

terms of spherical wave functions with unknown coefficients.

Then, using the least square error method, the unknown

coefficients were determined from the boundary conditioi.

The same method was used to solve a radiation problem of a

piston set in a sphere by Thompson and Skudrzyk [14].

Fenlon [15] discussed the radiation field at the surface of

ae
a finite cylinder, applying the method of weighted residuals
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on the internal Helmholtz integral equation. Hunt, Knittel,

and Barach (161 employed the finite element method for the

vibrational characteristics of the elastic body and the

acoustic pressure field enclosing the radiator. They used

the analytical method to obtain the boundary conditions for

this mathematical model.

To che author's knowledge, very few studies on the

radiation frcm a concave object in an infinite baffle have

been discussed. Ohie, Suzuki, and Shindo [17] discussea the

radiation from a concave sound source in an infinite baffle,

where the space inside the truncated cone was approximated

by the stairwise combination of thin cylinders, and

cylindrical wave functions were used in each cylinder. The

same kind of problem was investigated by Shindo, Kyono,

Yashima, Yamabuchi, and Kagaw:. [18j 'tsing the finite element
method. The same method was used hy Sakai, Kyono, Morita,

Yamabuchi, and Kagawa LI< for the investigation of

radiation from a horn loudspeaker.

Problems of acoustic diffraction oc scattering by a

sphere, an infinite cylinder, or a spheroid are found in

many articles such as [201-[25], in which the analytical

method is applicable. Another technique, the integral

equation approach, has been used by Burke, Miller, Poggie,

Pjerrou, Maxum, and Meecham [26] for the scattering by an

elastic body. Hunt, Knittel, Nichols, and Barach [271 used

the finite element approach to acoustic scattering from an

elastic circular plate. Most of these problems, however,
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deal with the diffraction or scattering of a plane wave,

which are different from the problem of interest.

As it was shown above, the finite element method has

been uaed for both problems of radiation from convex and

concave radiators. The method similar to the one used in

[13], however, will be employed for the present radiation

and diffraction problems since it is quite close to the

analytical method except for the way the unknown

coefficients are determiaed.

1.3 Statement of the Problew

The main object lies on the general discussion of the

relation between the shape of the diaphragm and its

radiation and diffraction chiracteristics. For the

generality of the discussion, it is desirable to represent

the diaphragw shape as simply as possible. A portion of a

sphere (which is called - "dome" hereafter) i: suitable for

this purp,'. because it is simply represented by one

parameter, the height-to-radius ratio. To simplify the

problem, an infinite baffle are assumed for Lhe radiation

and diffraction problems. The radiation and diffraction

characteristics such as on-axis pressure response, radiation

impedancc., phase response, directivity pattern, and near-

field sound distribution is discussed. It is reasonable to

assume axisymmetry of the sound field for the radiation

problem of a loudspeaker. A point source located close to a
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conver or a concave domE may be a more suitable model for a

three-d.mensional diffraction problem. Initially, however,

only an axisymmetric nound field is treated. An a sound

source in the diffraction problem, an axisynmetric circular

line source (which is called a "ring source" hereafter) is

assumed. This makes the analysis much simpler and still

gives a fundamental understanding of the problem.

The study addresses the following: (1) for the

radiation problem, the effect of the height-to-radius ratio

of the convex or the concave dome in an infinite baffle on

its radiation characteristics; and (2) for the diffraction

problem, the effect of the height-to-radius ratio of the

convex or the concave dome in the infinite baffle on the

radiation characteristics of the axisymmetric ring source.

U
.4



CHAPTER II

RADIATION FROM CONVEX AND CONCAVE DOMES

2.1 Geometrical Model

2.1.1 Convex Dome

The first problem is to investigate the radiation

phenomenon from a convex dome in an infinite baffle in the

semi-infinite fluid medium with density p and velocity c.

The existence of the infinite b.ffle is expressed

mathematically as the boundary condition that the normal

velocity on the baffle surface is equal to zero. The same

boundary condition is achieved by assuming another symmetric

dome on the other side and removing the infinite baffle.

For the convenience of mathematical treatment, this radiator

composed of these two domes in an infinite space will be

used as the radiator model.

The crozs section of this model is shown in Figure

2.1. The center of the radiator is the origin of the

rectangular coordinate system (X,y,z). The ratliator is

symmetric about xy-plane and axisymmetric about the z-axis.

Both dcmes are described as a portion of a sphere with

Sraditis R. The sphere of the right side dome has the origin

0 The polar coordinate systemas (r',0,•') with the origin 0

and (r,8,P) or (rl,1,l) with the origin 01 are used. The
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Figure 2.1 Geometry of the convex dome radiator.
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area of the right side dome (r-R, o<E0<0, 0<ý<27) is denoted by
.1

, and the imaginary surface (r-R, 0 <0<T, 0<ý<2r) is

denoted by S(2). The radius and the height of the dome are

A and H, respectively. The domes are assumed to vibrate

sinusoidally with angular frequency w in the z direction and

with the amplitude Uo and 180 degrees out-of-phase with each

other. The assumption of the piston-like motion may not be

suitable for an actual loudspeaker in the high-frequency

region because of the higher order modes developing on the

diaphragm, but it will be beneficial for basic discussions

of sound radiation.

2.1.2 Concave Dome

Figure 2.2 shows the geometry of the concave dome

radiator. The xy-plane coincides with the baffle surface,

and tLhe z-axis is the axis of revolution. The dome is

described as a portion of a sphere of radius R and origin

01. The dome has the radius A and height H. The polar

cocrdinate system (r,3,4) will be used for the semi-infinite

space including the cavity in the baffle. The surface of

Sthe dome (r-R, 0 <E<r, 0<cp<2n) is denoted by S(1). The points

on the surface of the opening S( 2 ) will be described by

(r 1 ,0 1 ,4I)•

J1
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2.2 Mathematical Discussions

2.2.1 Basic Equations for Radiation Problem

The sound in a fluid medium is a dynamic disturbance

of the fluid which can be described by a time dependent

scalar quantity like pressure or velocity potential. In

linear acoustics, the wave equation of the harmonic wave

propagation in the fluid is expressed by the Helmholtz

equation:

(V2 +k2) k (s) 2 0 . (2.1)

where (&() is the velocity potential, k is the wavenumber,

V2 is the Laplacian operator, • is the field point in the

acoustic medium, and the time-dependent term e is

suppressed. The pressure p(E) and the particle velocity

() are related to the velocity potential by the following

equations:

p(&) jwp W() (2.2)

and

() -OVt() , (2.3)

ihere V is the gradient operator.

The radiation problem is to find a solution to

Eq. (2.1) to satisfy the appropriate boundary condition.

The boundary condition on the radiator surface Is expressed

Sby

hi
i2
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L,4(•) = f(z) , (2.4)

where • is a point on the radiator surface. The Dirichlet

and Neumann boundary conditions are given by

L - jwp ; f(C) - P(C) (2.5)

and

L -- M ; f(•) - U(M) , (2.6)
ýn

respectively, where P(1) and U(Q) are the pressure and the

normal velocity distributions prescribed on the surface of

the radiator, and 'F is the unit outward normal to the

surface. It should be noted that Eq. (2.4) can also express

the mixed boundary condi.tion if one assumes Dirichlet and

Neumann boundary conditions on the different areas of the

radiator surface.

The solution of Eq. (2.1) also has to satisfy the

radiation condition [28]:

f -ý- p(ý.)+Jkp(•E) dS = 0 (2.7)
S^

r

where r is the distance from the origin of coordinates to

the field point, and S? is the surface of a sphere of radius

rcentered at the origin, surrounding the field point • and

the radiator.
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2.2.2 Least Square Error Method

As it was mertioned before, one cannot apply the method

of separation of variables, because there extsts no

appropriate coordinate system that matches the boundary of

the radiator except in the case of H/A -1.0, which

corresponds to the radiation from a complete sphere. Here,

the method called "least square error method" will be used

extensively in the present radiation and diffraction

problems [29].

The velocity potential will be expanded in the

following form:

Z a i(,(2.8)
n0O

where an is the unknown coefficient, and the set of infinite

trial functions M ~ is considered to be capable of
n

describing the unknown function 4()which satisfies the

wave equation Eq. (2.1) and the radiation condition

Eq. (2.7). When the maximum of the order n is truncated by

N, the "best" approximation of the boundary conditionEq. (2.4) on the boundary S is defined as a solution with
the set of unknown coefficients an n -nO, 1,., N that
makes the following functional stationary:

N 2
3 jq( L a n'y n~ 0 dS, (2.9)

where
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Tn4(Q L qJ() , (2.10)n n

a, d q(C) is a non-negative weighting function necessary at

least for the consistency of dimensions of the integrands of

Eq. (2.9) in the case of mixed boundary condition problems.

The an is given by the condition that J is stationary, i.e.,

insensitive to arbitrary variations in the parameter an'

0 , n= 0 , 1, . ,N (2.11)
n

Substituting Eq. (9) into Eq. (11), (N+I) simultaneous

equations are obtained [see Appendix A]:

f q() = an Tn(C) T ( dS ff S q(C)T*(ý)f(C)dSm

S

m = 0, 1, .,N, (2.12)

where * denotes the complex conjugate.

Thus, if the proper trial functions and expressions

for the boundary condition are found, the solution of best

approximation can be obtained by solving Eq. (2.12).

2.2.3 Radiation from a Convex Dome,

The general discussion of the mathematical tool used

for the radiation problem has been completed in the previous

two sections. In order to solve the problem efficiently, it

is important to use physical and mathematical intuition for

the selection of appropriate trial functions and the

'1 1
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coordinate system. This means that the proper choice of

trial functions and coordinate system enables one to

"approximate the boundary condition accurately enough with

the smallest order of truncation N.

The direct and simple application of the previous

mathematical discussion for the radiation problem by the

convex dome shown in Figure 2.1 is to expand the velocity

potential in terms of spherical harmonic functions with the

origin at the center of the radiator. However, two basic

problems are inherent with this procedure. [These are

discussed in detail in Appendix B.]

Now, on the basis of this knowledge, it seems

reasonable to choose the center of one of the spheres as the

origin of the coordinate system. The velocity potential is

expanded in terms of the infinite series such as [301:

(x) =W a h (kr) P (cosa) (2.13)
Sn n

-n-

where h (kr) is the spherical Hankel function of the second

kind and order n with the suppression of the superscript

(2), and P (cosO) is the Legendre function of the first
n

kind and order n. [The validity of the expression in the

form of Eq. (2.13) for Dirichlet and Neumann boundary

conditions is shown in Appendix C.I

Then, the boundary condition on the radiator surface

SS( is given by

L( M (2.14)
'r r=R
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and

f(1)(•) - U0 cose (2.15)

Then,

I(i)(0) = - k h'(kR) P (Cose) . (2.16)
n n n

Here, the superscript (1) or (2) indicates the functions

with regard to the surface S(l) or S(2), respectively.

Also ( n)(0) and f(l)(e) are used instead of TI(I)(•) and

f ) since they are functions of e only.

On the imaginary surface S(2), one can use the

condition of symmetry of the sound field. The velocity

potential at point P is equal to the one at point PI, giving

the relation:

N N

a hn(kr) Pe(cosO) a hn(krl) Pn(CS1 (2.17)n=fO nn=O

where R, e, r,, and e) are related to each other by the

following equations:

* cos1 - R (2 cosO - cose) (2.18)
1 o

and

r1 sinOI = R sinO (2.19)

and R is given by

R -(H2 + A2)/2H . (2.20)
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Rewriting Eq. (2.17), one obtains

N
7 an[ h (kR) Pn (cosO) - h,(kr) Pno(CoS 1 )] 0 . (2.21)
n-0

The condition of symmetry of the sound field does not

give an explicit form to the operator L. But, comparing

Eq. (2.21) with Eq. (2.4), one comes to the interpretation

that the operator L, when applied on the velocity potential

at a point, gives the difference of velocity potentials at

that point and its symmetric point.

Thus, I(2)e) and f( 2 )(6) can be defined such as:
Sn

(0)- h (kr) Pn(cose) -hn(kr 1 ) Pn(COse 1 ) (2.22)

and

(2)
f(2) 0 (2.23)

Applying Eqs. (2.16), (2.17), and Eqs. (2.22), (2.23) into

Eq. (2.12), the set of (N+1) simultaneous equations are

obtained:

n-N •(2)* (2) ,(2
N a I '(l)*(6) 'T(l)(o) dS + f I (2 ) IF (0) dS]

n S m n (2)m n

M "(e) f~(e) dS m i 0, 1, . ,N, (2.24)SS m
(1)

where

q() = 1.0 (2.25)

* . - *** •* a ,% "* . -,
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is assumed in Eq. (2.12).

2.2.4 Radiation from _ Concave qA

In the case of radiation from a concave dome, it is

impossible to get rid of the infinite baffle without

changing the boundary condition. Thus, the sound field must

be dealt with in a semi-infinite space. Instead, one can

use the knowledge that the sound field is uniquely

determined by the use of the Rayleigh integral if the normal

velocity distribution on the baffle surface is given.

The velocity potential inside the sphere with the

origin 01 is expanded in terms of infinite series such as

[301:

N
- ia j (kr) P (cosO) (2.26)pn.O n n n

where Jn(kr) is the spherical Bessel function of the first

kind and order n.

The boundary condition on the radiator surface S(1)

is given by the same forms as Eqs. (2.14) and (2.15):

L (2.27)

and

(0) C rosa (2.28)

"Thus,

7o'1

".I. -
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( - - k J'(kR) Pn(cose) • (2.29)
nln

Once the expression for the velocity potential (with

unknown coefficients) inside the sphere is given, one can

obtain the normal velocity distribution on the opening S(2)

of the cavity:

uB(rl,el) - - -rr)

o-.q

- _ 2 -1+ . Drlr-r1 • (2.30)

The derivatives are given from the geometry by

_r . cose (2.31)
ýz

and

- s si ne (2.32)
•z r

Substituting Eqs. (2.31) and (2.32) into Eq. (2.30), one

obtains

uB(rl,OI) a n[kcos61 Jn(krl) Pn(cosel)
n-0

2
"" sin 0 j (kr) P'n(Cosa )/r (2.33)

i n 1n 1I

Now, the velocity potential 'pu (r,0) due to uB(rll) outside

the cavity can be obtained using the Rayleigh integral:
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rs(2) dS (2.34)

where

d = [(rsin6 -rsinOlcOSO 1 ) 2 + (r sinelsinb 2)

1/2
(rcose - r cosa (2.35)

it the distance between the point of interest (r,0,O) and

the point of surface element dS (rl,01,ol) The two

velocity potentials given by Eqs. (2.26) and (2.34) must be

equal to each other (potential matching) everywhere inside

the sphere and outside the cavity.

It seems reasonable to impose the condition of the

potential matching on the imaginary surface of the sphere.

But the expansion of the form of Eq. (2.26) causes a

nonuniqueness problem when the boundary condition is given

on the surface of the sphere at or near its characteristic

frequencies [see Appendix C]. For this reason, the opening

of the cavity S(2) is chosen as the area on which the

condition of potential matching is imposed. Then, one

obtains

N N
a [j (kr) P (cosO)] - - a i kcosO l'(krl
n n n n nnn0On-0S (2 )

-j kd
X P (Cosa + sin 2

1 in (krl) P'(CsO1 )/rl} _ dS) ,

(2.36)

• , . ... , . , •:.• .. - .• ' . :L e ,
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with the relationship between r and 0 such as:

r - 0 /Cos8 . (2.37)

where z is the distance between 0 and 01. Rewrite this

equation,

, 0 an [n (kr) P (cose) + ({kcoslJ'(kr 1 ) Pn(COSOl)
n-0O (2)

2 e-jkd

+ sin 21 j(kr) Pn'(Cos )/r} -J-) dSj- 0 • (2.38)

Thus, (2(8) - and f(2)(0) can be defined such as:Sn

(2) (kr) P (cose) + (2{kc°S) l n(k) Pn(cos8)
n n n(2)

S-.-j kd

+ sinn2 j (krl) pI(cos8l)/rI} (e ) dS] (2.39)

and

f (2)() - 0 . (2.40)

Now, by the same method used in Section 2.2.3, one obtains

the (N+I) simultaneous equations [again Eq. (2.25) was

assumed]:

N () r (2)* (2)a a (1 ( )(e) dS + ( 6) ( (0) dS]
n=0 S (1) m nS(2) m n

-f T(1)*(O)f(1)(0) dS , m = 1, , . ., N. (2.41)

s(i)
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2.2.5 Geometrical Approximation Method

It is well known that sound will be radiated normal to

the surface of the radiator when the wavelength is much

smaller than the radiator size. For higher frequencies, the

geometrical approximation begins to have practical meaning.

The geometrical approximation here assumes that an infinite

number of point sources are distributed in such a way that

they form the shape of the radiator with equal surface

density in an infinite space. The on-axis sound pressure of

the convex dome, which is normalized by the sound pressure

due to a single point source with the same total volume

velocity at the origin 0, is then given by

° ikR(cos6-cosO )
jo 27TRsinecosee RdJ]/?TR sin 2 0P0

ikR(l-cosO 2 2
2[e 0 (ikR - 1) + (I - coso " ikR)/sin 6 (IkR)

A60 0

(2.42)

The expression for the concave dome is the same except that
the phase response has the opposite sign. The results

obtained with this method will be compared with exact

solutions.

41

S. ...... .
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2.3 Results and Discussions

The calculations were made for three different

height/radius ratios such that H/A - 0.5, 0.75, and 1.U.

The frequency range was from kA - 0.1 to 10.0. The accuracy

of the results was confirmed by verifying the degree of

matching of velocity and velocity potential. Except in the

vicinity of the rim of the dome, the differences were less

than a few percent. Tho weighting function q(Q) in

Eq. (2.12) was kept equal to unity all through the

calculations, because varying it did not give any

significant improvement in accuracy. The maximum order of N

was 40 for kA - 10.0.

2.3.1 On-axis Pressure Response

The far-field on-axis pressure response of a convex

dome normalized to the pressure response of a flat piston

with same volume velocity are shown in Figure 2.3, for H/A

- 0.5, 0.75, and 1.0. When H/A is equal to 0.5, the

response shows a meaningful decrease from about kA - 0.5,

and reaches to the -3.5dB line around kA - 2.0. For H/A -

0.75 and 1.0, minimum levels in the middle frequency region

(say, kA - 0.5 - 5.0) are -6.5dB and -9dB, respectively.

This effect of the diaphragm shape on the pressure response

is essential when a dome-type loudspeaker is designed. For

a dome-type loudspeaker with a 1cm radius, the range from kA

= 0.5 to 5.0 corresponds to the frequency range from 2.7kHz

to 27k|{z. This range includes the reproduction range of a
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dome-type loudspeaker, which may have the H/A ratio of about

0.75. This means that the achieved pressure response is

much lower than the one estimated from the assumption of a

flat piston. This kind of discrepancy is usually

encountered when a dome-tyoe loudspeaker is designed.

It is meaningful to compare the pressure response with

results obtained by the geometrical approximation method,

which are shown in Figure 2.4. All three responses begin to

roll off from about kA - 3.0 at the rate of -6dB/oct., but

with different undulations. As the H/A ratio becomes

smaller, the fluctuation becomeG larger. In Figures

2.5-2.7, two responses obtained by the least square error

method (LSM) and the geometrical approximation method (GAM)

are compared for each H/A ratio. Figures show that the

geometrical approximation gives a fairly good estimation of

the true response in the high-frequency region. Especially

for H/A - 1.0, the difference is less than 1dB above kA -

4 4.0.

The results of the concave dome are shown in Figures

2.8-2.10. Contrary to the results of the convex dome, the

pressure response of the concave dome has a wide peak

around kA - 1.0 - 1.5 for H/A - 1.0 - 0.5. This region is

included in the reproduction range of an actual cone-type

loudspeaker. For H/A - 0.5, the peak level is about 4dB.

This kind of resonance effect is not clearly observed in the

pressure responses of an actual loudspeaker. Two reasons

for this can be considered. The first one is that the

• " i/
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actual cone diaphragm may break up around this frequency

region. The second one is that the inductance of the voice-

coil reduces the driving force in the same region. For the

concave dome, the geometrical approximation gives a rough

estimation of the true response.

divied intov threeureionsos. thahe regona iang mhic the

Thvied abtovedsusohw thate thin.h egtota rang mayc bhe

response is almost equal to that of a flat piston is the

low-frequency region (approximately kA _-, 0.5). In the high-

frequency region (approximately kA ;t 5.0), the response can

be estimated by the geometrical approximation method. In

t~he range between these two regions, the reŽsponse must be

obtained by an exact method.

The fact that responses of the convex and concave

domes are intrinsically different may mean that the sound

quality of them may also have basic differences.

2.3.2 Radiation Impedance

The normalized radiation impedance is defined by the

following equation:

1 r * 1 22 (.3
Z r - 2() P r 2 C~S/- pcirA *UI0(.3

The numerator of this equation is the total power (complex).

and the denominator is the effective radiated power from a

radiator with velocity Uo and constant radiation impedance

2pcirA The real part (Re) of Zr is the normalized
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radiation resistance, and the imaginary part (Im) is the

normalized radiation reactance.

The radiation impedance characteristics of the convex

dome are shown in Figures 2.11 and 2.12. The radiation

rebistance of the convex dome is smaller than that of the

flat piston with the same radius, and decreases as the

height of the dome increases. The radiation resistance of a

flat piston fluctuates above kA - 2.0, while its pressure

response stays constant. On the other hand, for the same

frequency region, the radiation resistance of the convex

dome is constant even if its on-axis pressure response

varies.

In order to discuss the frequency response of the

radiated power, the radiation impedances were plotted on a

logarithmic scale in Figures 2.13 and 2.14. When the

diaphragm is driven with constant acceleration with respect

to frequency, the velocity decreases by 6dB/oct. If the

response of lOlog(zr) increases by 6dB/oct., the radiated

power remains constant. As Figure 2.13 shows, the flat

piston has the closest radiation resistance to the line with

a 6dB/oct. slope. As the H/A ratio increases, the convex

dome reduces its range uf the constant power response. For

H/A - 0.5, the radiated power at kA - 2.0 is about 5dB lower

than the level in the low-frequency range. The radiation

reactance of the convex dome has a slope of +3dB/oct. and

-3dB/oct. in the low- and high-frequency region,

respectively, and always positive (mass-like).
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The radiation impedances of the concave dome are shownI
in Figures 2.15-2.17. Radiation resistance of thn concave

dome is much larger than that of the flat piston and the

convex dome in the region kA :5 3.0. This can be explained

as a resonance effect of the cavity. The frequency of the

maximum resistance is slightly higher than that of the

maximum pressLre response. The radiation reactance is zero

at these frequencies, and mostly negative (spring-like)

above those frequencies.

The plot of the radiation resistance on a logarithmic

scale is shown in Figure 2.18. The 6db/oct. line stays

between the curves of the flat piston and concave dome with

H/A -0.5. Thus, if the acceleration of a diaphragm is

constant with respect to frequency and if the diaphragm

stays like a piston, the widest range of constant radiated

power is achieved by a concave dome with H/A ratio somewhere

between 0.0 and 0.5. The radiation mass loaded on the

concave radiator is almost equal to the sum of the mass of

the f luid inside the cavity an'd the radiation mass of' a f lat

piston with the same radius (= 0.85 pitA )3

2.3.3 Phase Response

The far-field on-axis phase responses of the convex

and concave domes, which are normalized to the phase

response of an on-axis point source on the baffle, are shown

in Figuires 2.19-2.20, respectively. The phase responses of

the convex and concave domes increase or decrease
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respectively as the frequency increases. It is interesting

to separate the total phase response into two parts, i.e.,

the minimum phase response obtained from. the amplitude

response through a Hilbert transform and the remaining phase

response. The transfer function of the loudspeaker can

therefore be represented by the following form:

i~min) anlpass(
H(w) A(w)e e l (2.44)

The non-minimum phase response a (w) is
allpass

important because, even if the pressure response is ideally

equalized by a minimum phase network, it still remains as

the factor which causes a time delay.

The response mn(w) is obtained from the Hilbert
min

transform [311,

•min(W) = tnA(w')dw'/(w' - w). (2.45)

For the exact solution of Eq. (2.45), one must know the

pressure response A(w) over the entire region of w. But the

range actually known is from kA 0.1 to 10.0. For kA

10.0 to 819.1, the pressure responses were calculated by the

geometrical approximation method. This frequency region

was sufficient to obtain the required precision of (min(W)

in the frequency range from kA = 0.1 to 10.0. Then,

ýallpass(w) is obtained by

(W) (W min() (2.46)
alipass total mi(.46



48

By dividing Eq. (2.46) by k, one obtains the corresponding

distance due to the phase delay, which will be referred to

here as the "acoustic center". The characteristics of the

acoustic center for various values of H/A are shown in

*Figures 2.21-2.22. The results in the low-frequency region

are not quite correct because of using the discrete Fourier

transform with the frequency interval of 0.1 to calculate

Eq. (2.45). Also, a small error in the phase response can

cause relatively large fluctuations in this region. The

result for the concave dome with H/A -1.0 is not shown

because of the difficulty of taking into account the sharp

dip of the pressure response around kA - 4.15.

It is interesting to note that the position of theK: acoustic center of a convex dome is constant and equal to H

over the entire frequency range from kA - 0.1 to 10.0. The

same result is obtained from the purely geometrical

approximation. The reason for the existence of the acoustic

-* center at the front of the source is shown in Appendix D

for the case of a line source as an example.

The position of the acoustic center of the concave

dome is also constant except in the very high-frequency

region, and is located between the baffle surface and the

top of the dome. The results of Figures 2,21-2.22 are very

important because they show the location of the source after

the equalization of the pressure response. The equalized

responses of the convex and concave domes are nondispersive

in the range used for an actual loudspeaker.
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2.3.4 Directivity Pattern

The directivity pattern is one of the most important

characteristics of a transducer. If one knows both the on-

axis pressure level and the directivity pattern at a

specific frequency, total radiated power and the radiation

impedance at that frequency can be calculated.

Direct;ivit~y patterns of the convex dome are shown in

Figures 2.23-2.28, along with those of a flat piston. The

on-axis pressures are lower than the 90-degree off-axis

pressures for the convex domes with H/A - 1.0 or 0.75, and

at kA - 1.0 and 2.0. From this frequency region, the convex

dome has a wider directivity pattern than the flat piston.

The convex dome has the narrowest directivity pattern

around kA 5.0 (Figure 2.26). Again, at higher

frequencies, lower on-axis pressure responses than the off-

axis pressure responses are observed (Figures 2.27 and

2.28).

Figures 2.29-2.35 show the directivity patterns of a

concave dome. The concave dome has almost the same

4 directivity patterns as the flat piston until about kA -

3.0. Figure 2.32 shows the directivity pattern at kA =

4.15, which is the frequency at which the on-axis pressure

response has a sharp dip (Figure 2.10). The on-axis

pressure is much lower than the 66-degree off-axis pressure.

This results suggests that the normal velocity distribution

on the opening of the cavity is not in a uaiforin phase. In

the higher frequency region, the directivity pattern of a
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concave dome has similar properties to those of the convex

dome. Neither dome shows zero pressure at any angle. As a

practical point of view, it should be mentioned that the

convex dome has wider directivity than the concave dome or

the flat piston in the frequency range normnally used for the

loudspeaker.

2.3.5 Energy Flow and Pressure Distribution

Besides the sound pressure, the important and

interesting quantity used to describe the sound field is the

energy flow. Therefore, the sound intensity was calculated

and the results are presented for some '-.A values.

The x and z components of intensity in the field are

defined as

I =Retp u* /2. (2.47)

Then, the direction of the particle motion and the intensity

Ij i Ioin that direction are given, respectively, by

0 tan1 (I/I) (2.48)

and

2 2 1/2
I0 x' + I Z) (2.49)

4 These two values are simply described by an arrow with its

direction and length.

The graphs of energy flow and pressure distribution of

the convex dome for several H/A values are shown in Figures
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2.36-2.44. The arrow shows the relative amplitude

proportional to (I )1/2 and the direction of Io at the point

of the tail of the arrow. The size of the circle is

proportional to the absolute value ot the pressure at its

center. For the convex dome with H/A - 1.0 at kA 1.0

(Figure 2.42), the energy tends to flow from the high-

pressure region (near axis) to the low-pressure region

(off-axis) on the surface of the radiator. As a

consequence, at distances greater than approximately 3

radiator radii, the on-axis sound pressure is smaller than

the 90-degree off-axis sound pressure. As the frequency

increases, the energy starts to be radiated normal to the

surface, and the bundle of energy is confined near the a:as.

The pressure distribution and the energy flow of the

concave dome are shown in Figures 2.45-2.54. The energy

radiated from the concave dome with H/A = 1.0 at frequency

kA = 1.0 (Figure 2.51) flows along the axis inside the

cavity. The pressure is constant along the opening of the

cavity, but decreases along the axis even inside the cavity.

This shows that the effect of the cavity cannot be

represented by a simple lumped compliance in the analog

circuit. At kA = 3.0 (Figure 2.52), the pressure along the

opening is not constant, and the energy flow is not parallel

to the axis anymore. The graph at kA = 4.15 (Figuie 2.53)

shows some interesting results. The energy radiated from

some area of the radiator surface goes around about 360

degrees inside the cavity, and goes out to semi-infinite
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space from near the rim of the dome. The results of the

sound pressure response and directivity pattern at this

frequency are e.plained clearly by the energy flow and

pressure distribution. At kA - 10.0 (Figure 2.54), the

energy radiated normal to the radiator surface converges

around the center of the sphere and then spreads out to

semi-infinite space.

At was shown above, the graphical representation of

the energy flow as well as the pressure distribution Is a

very useful tool for understanding the radiation problem.

2.3.6 Comparison of Results with other Methods

The results of the radiation and diffraction problems

are compared with those obtained by different methods. As

was mentioned earlier, Ikegaya [61 calculated the on-axis

pressure responses of a convex dome, approximating it by an

oblatc epheroid for the cases of H/A - 0.2, 0.37, 0.5, and

1.0. The last case coyresponds exactly to the radi.'tion

from the rtonvex dome with H/A - 1.0. His results for H/A x

A 0.5, and 1.0 are plotted in Figure 2.55 along with the

results obtained by the ?resetst method. Both responses for

H/A - 1.0 are in good agreement with each other except the

small discrepancy in the low-frequency region. The present

method lacks some accur icy in this region, but is accurate

enotigh in mid- to high-frequency regions. Fnr H/A - 0.5,

both results are significantly different from each other in

the higkh-frequency region. ihis difference is considered
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reasonable because the oblate spheroid has a flatter region

around the z-axis than does the convex dome with the same

H/A. It seems that the oblate spheroid suffers larger

energy flow to the off-axis direction in the middle-

frequency region since it has smaller normal velocity

distribution around its rim compared with the dome.

Figure 2.56 compares the on-axis pressure responses of

the concave dome obtained by our method (LSM) and by the

finite element method (FEM). The programming and the

calculation by the FEM were carried out by the staff of the

Loudspeaker Section of Consumer Products Research

Laboratory, Mitsubishi Electric Corporation in Japan, at the

author's request. The number of axisymmetric triangular

elements were 240, 360, and 450 for H/A - 0.5, 0.75, and

1.0, respectively. The boundary coutdition on the opening of

the cavity was given in the form of self and mutual

impedances of each mode. Inside the element, the pressure

was expressed as a combination of pressures at six nodes

using a shape function of quadratic form. The results of

the FEM show higher resonance frequencies. But the

differences of two curves for H/A - 0.5, 0.75, and 1.0 are

mostly less than IdB, respectively. The agreement of these

two methods indicate that the present method is good enough

for the discussion of the radiation characteristics of the

concave dome radiator.

1
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CHAPTER III

DIFFRACTION BY CONVEX AND CONCAVE DOMES

3.1 Geometrical Model

This chapter deals with the diffraction of sound by

the convex and concave domes that were used as radiators in

Chapter II.

Figures 3.1 and 3.2 show ring sources with a

concentric convex or a concentric concave dcme in an

infinite baffle, respectively. The ring source has radius

A1 and source strength 2wA Q The convex and concave dowes

are represented as a portion of a sphere of radius R, and

have height H and radius A.

The rectangular coordinate system (x,y,z) is used with

the origin 0. The polar coordinate system (r,6,0) is used

with the origin 01 at the center of the sphere. The

surface of the convex or the concave dome, which is denoted

by S(o), is represented by (r - R,0<•<0, 0j<02w) or

(r - R,6e<e<r, 0<¢<2w), respectively. In Figure 3.2, the

open;.ng of the cavity ( x2+y2 - A,z=O) is de:aoted by

For the same reason as in Chapter II, the model shown

in Figure 2.1 will be used for the diffraction problem by

the convex dome; however, it does not show the ring :,ource.

The imaginary surface of the sphere with the origin O1 is

denoted by S(2).

- u*i*-*'
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3.2 Mathematical Discussions

3.2.1 Diffraction by a Convex Dome

The present diffraction problem is actually a

radiation problem from a ring source with a concentric

convex or concave dome as a diffracting object. Hence, the

mathematical methods described in Sections 2.2.1 and 2.2.2

* are also applicable to the present problem.

In the diffraction problem of the model shown in

Figure 2.1 (with the ring source missing), the center of the

sphere Js chosen as the origin of the coordinate system, and

the boundary conditions are given on the surface of the

sphere S(I) and S(2). The total velocity potential t (0)

outside the sphere can be expressed by

4r(•) = 's(•) + (3.1)

"where ' (6) is the potential due to the ring source, andS~s

is the secondarily radiated (reflected) potential by

the convex dome. On the radiator surface S(M), t (0) must

satisfy the Neumann boundary condition,

C= +[ D'5~ 1+Pd(0)= 1 0 .(3.2)

Rewriting Eq. (3.2), one obtains

[-r '/d("~'r=R = [ Ips' )r=R
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Thus, on the surface S"), L0 1 ) and f(l)•) are given by

= - - -(3.4)3r

and

f(l)(;) W - (3.5)

respectively.

The velocity potential ip(r,e) at the point (r,e,0) is

given by

4'0(r,(d) - QA, r27T -ikd1  (3.6)

where di is the distance between the point of interest

(r,6,0), and the point of line element A1 dOi of the ring

source at (Ri8 1 ,6_1 ), which is expressed by

2 2 2 1/2
d [(rsinO - A1 COSO1 ) + (Asin01 )2 + (rcose - z 0)

(3.7)

The normal velocity distribution on the surface S(1) of the

dome is therefore given by

QA 1 f 2 TF

Tr Os(rO) I= [(I + ikd )e-jkdl {(Rsin - AlcoS0 1)

0

\ sinO + (RcosO - z )cosOl/d3]dO1I (3.8)
0 131

Expressing ',.e unknown function ''d() in terms of an

infinite number of trial functions,



95

00

S a hn (kr) Pn (cose) (3.9)
n.0

the function defined by Eq. (2.10) is obtained from

Eqs. (3.4) and (3.9) as

( - khn(kR)P (cose), 0 <e< 0 (
n n " ' - O

The symmetry of the sound field about the xy-plane

requires the symmetry of the velocity potential Wd(•) itself

about the xy-plane; i.e., the velocity potentials at point P

(r,6,0) and P1 (r 2 ,0 2 ,O) are equal to each other (potential

matching). From Eq. (3.9), one obtains

00

an{h n(kR)Pn (cosO) -h(kr 2 )Pn(Cose 2 )} 0 . (3.11)
n=0

In the case of potential matching, the operator L is not

expressed explicitly. By comparing Eqs. (2.4) and (3.11),

one comes to the interpretation that the operator L gives

the difference between two velocity potentials at a point

and its related point (in this case, symmetric point). One

can define ) and f as

41(2)(0)n [h (kR)P (Cose) - h(kr2 )Pn(Cos0 2 )] (3.12)

and

f (2 ) ( ( . (3.13)

Now, applying Eqs. (3.5), (3.8), (3.10), (3.12), and (3.13)

• , - • ,• • ,1•: ,
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to Eq. (2.12),one obtains

N a [f (l)*,(T) (2)* 2)
I=O n (1 m •Pn (ed +S2) m ne• ()S

nO i s (1)

dS , n O, I, . ., , (3.14)

fS(1)

where dS 2rR 2sined3, and Eq. (2.12) was assumed.

3.2.2 Diffraction by a Concave Dome

The diffraction problem by a concave dome is also

treated here as a radiation problem from a ring source in an

infinite baffle with a concentric concave dome (Figure 3.2).

The velocity potential inside a sphere of radius R with the

origin at 01 is expressed by

i;, t() " s()+ d() •(3.15)

The potential s (0) is the one radiated by the ring source

existing only in the semi-infinite space on the right side

of the xy-plane. The total potential Pt(•) inside the

sphere can be represented as

00

a Jn (kr)P (Cose) (3.16)

On the surface of the concave dome S"), this must satisfy

Sthe following condition:

)r - • 0 . (3.17)

)r d



97

This defines LM1 ), f (6)(), and '(1)(6) such as
n

L(1) (3.18)"L " -•r'(.s

f ( 1) 0 , (3.19)

and

.- kin(kR)Pn(CCSe) • (3.20)
n

In the region inside the sphere and outside the

cavity, the total potential is divided into two components:

the direct velocity potential %s (), and the diffracted

velocity potential %d(E) due to the concave dome. The

potential is (&) is given by the same equation as Eq. (3.6).

The potential d(ý) is obtained by the Rayleigh integral of

the normal velocity distribution uB(r2, 0
2 ) on the opening

S(2), which is given by

uB(r 2 , 0
2) - r [ 1t(r,0)Irumr 2

0 =

02

The derivatives ýr/Dz and 30/3z are given from the geometry

by

Ir/Dz = cosO (3.22)

and

0/z= - stAO/r .(3.23)
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From Eqs. (3.16), (3.22), and (3.23), one obtains

uB( 2 ,( 2 ) = Y7 an[kcosO0jn(kr2)Pn(Cos9a)
n.0

+ sin2 e2J (kr 2 )P'(cose 2 )/r2] . (3.24)

Then, d(r,0) is given by

-ikd.

(we 6d(r'e) f ) uB (r2,2) (e /d)dS]/27 , (3.25)
S

where the coordinate of the surface elemen:t is (r 2 ,a 2 ,€ 2 )

and

d2 2 2(rsinO - r 2 sine2 cos$2 ) 2 + (r 2sinO2 sinO2) 2

2 1/2
+ (rcos0 - r 2 cosa2 ) ] (3.26)

From Eqs. (3.16), (3.24), and (3.25), following equation can

be obtained:

N f 27T - ikdlY a n Jn(kr)P n(Cos) = QA1 [e /d1d1l/2ni

.4 n=O

- Y a [f {kcos 2(k2P(O)n=O n S(2) sj Ynce-)

S~-ikd•

+ sin-02 J (kr 2 )Pn(cos0 2 )/r 2 } (e -/d 2 )dS]/21T. (3.27)

The condition expressed by Eq. (3.27) must be satisfied

everywhere in the region inside the sphere except at the

cavity. But, if the imaginary surface of the sphere is

chosen as the one where the condition of Eq. (3.27) is



99

imposed, the nonuniqueness problem occurs [see Appendix C].

With this in mind, it is chosen that the condition of

Eq. (3.27) is required on the opening of the cavity S(2).

Rewrite Eq. (3.27) such as

I auY 2)) (r,6) - f (2) "() (3.28)

Sn 

n-0

where

T(2) (r,e) - jn(kr)P (case) + f[nkcosO2nJ(kr2)Pn(case•n n f(2) 2n 2n 2

+ sn 202Jn(kr2)Pn(Cosa 2 )/r 2 } (e 2 /d 2 )dS]/27t (3.29)

and

f(2)(r,6) QP1 [ (e /dl)d41 ]/2Tt (3.30)

with the relationship between r and 0 such as Eq. (2.37).

Now, the unknown coefficients a n = 0, 1, . . ., N are

obtained from the set of (N+I) simultaneous equations with

the same form as Eq. (3.14):

"nJ m n J n
n (f 0d "trv• rO

n=0(2

S-- f(2)M m2 * 0 ( 2, ) (r,0)dS, vi 0 , 1,. . . N . (3.31)

IS
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3.3 Results and Discussions

Corresponding to the radiation problem from a convex

or a concave dome, the height/radius ratio of the dome was

chosen such that H/A - 0.5, 0.75, and 1.0. in most of the

cases, the radius of the ring source A1 was equal to i.5A.

The weighting factor q(r) in Eq. (2.12) was kept equAl 11-o

1.0 as in Chapter II. The accuracy of the ults was

confirmed by checking the error factor of Eq. (2.9) at each

frequeicy. The maximum value of index N was 60 for kA - 40.

3.3.1 On-axis Pressure Reiponse

The far-field on-axis pressure responses of the ring

source with the convex dome are shown in Figure 3.3-3.5,

where the strength of the ring source is inversely

proportional to w The effect of the dome appears from

approximately kA = 1.0, giving gradual rise to the response

as the frequency increases. The height of the plateau is

about 2.5dB and does not depend strongly on the H/A ratio.

The differences of the levels of the peaks and dips in the

high-frequency region are more than 1OdB for H/A - 0.5 and

0.75. As the H/A ratio increases, the differences decrease,

and the peaks and dips are shifted to higher frequencies.

The results indicate that the radiat on efficiency Is highly

frequency dependent.

Figures 3.6-3.8 and Figures 3.9-3.11 show the on-axis

pressure responses of the ring source with a concave dome

for Al/A = 1.5 and 2.0, respectively. The concave dome
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begins to have some effect on the response from about the

same frequency (kA - 1.0) as the convex dome for A,/A - 1.5.

The first effect, however, appears as a large dip on the

frequency response, contrary to the results shown in Figures

3.3-3.5. The fluctuations of the response are much smaller

compared with those of the convex dome. As the H/A ratio

increases, the frequencies of the peaks and dips are

lowered. When the A1 /A ratio is increased (Figures

3.9-3.11), the effect of the cavity on the response

decreases, and the lowest frequency at which the effect is

evident also decreases.

These results show that the object (convex or concave)

in the infinite baffle has a large effect on the radiation

from an adjacent source. One effect of practical importance

is demonstrated by Figure 3.12, which shows the difference

in the response when height H is changed by ±O.02A from H -

O.SA. For example, when A - 15cm, the change in the height

is +3mm. Figure 3.12 indicates that the change of the

height of the dome will produce amplitude-modulations of

;-bout -30 to -40dB at some frequencies.

3.3.2 Directivity Pattern

Directivity patterns of the ring sources are also

affected by the convex or the concave object in the infinite

baffle as shown in Figures 3.13-3.15 and Figures 3.16-3.18

for the case of H/A - 1.0, respectively. Figures also

include some of the directivity patterns of the ring source
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only. Again, the convex and concave domes work in opposite

ways. The convex dome widens the directivity pattern at kA

S1.6 as well as increases the on-axis response, resulting

in a larger efficiency (Figure 3.13). The directivity

pattern of the ring source with the concave dome at kA - 1.2

is much narrower than the one without the dome (Figure

3.16). In the high-frequency region, the effects of the

domes are too complicated to be described simply.

3.3.3 EegFlwand Pressure Distribution

The pressure distribution and energy flow around the

source at several frequencies for 11/A -1.0 are shown in

Figures 3.19-3.24. The circles indicate the relative

magnitude of the pressure, and the arrows show both the

direction of the energy flow and the square root of

intensity. The figures show that the boundary condition of

zero velocity distribution normal to the baffle and the

surface of the dome is satisfied. The results in Figures

3.22-3.24 were calculated using the left-hand s'ide of

Eq. (3.27) inside the cavity, and the right-hand side of the

same equation outside of it with the maximum order of n

truncated at N.

The convex dome has the property that it diffracts the

sound more in the high-frequency region. On the other hand,

the concave dome does not have much effect in the high-

frequency region. At kA 10, the energy flows along the

opening of tile cavity as if there were no cavity (Figure
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3.24). An interesting phenomenon is observed in Figure 3.23

which shows a couple of vortexes around the cavity at kA =

4.6. A similar phenomenon was observed by Schultz et al. in

the measurement of intensity flow in a reverberant room, and

he suggested as its reason a coupling between different

modes [32].

Consider a sound field inside a room consisting of

two tangential modes which is represented by

i(x,y) = cos(3Trx/l)COS(7ry/l ) + icos(TrX/I )cos(2Try/ly)
xyx y

(3.32)

These two modes have the same wavenumber (35/3)i /21/i,

when 1y /lx, (3/8)1/2. The pressure and the particle

velocity of this potential &re obtained by Eqs. (2.2) and

(2.3), respectively. Then, the intensity is given by

Eq. (2.46).

The results calculated by Eqs. (3.32) and (2.46) are

shown in Figure 3.25, which shows the circulation of energy

very clearly. In the case of a single mode, there is no

(time average) energy flow because the pressure and the

particle velocity are 90 degrees out-of-phase with each

other. If the field is of multiple modes, however, energy

flows from one mode to another, causing the circulation of

energy. If a semi-infinite space contains any part which is

resonant, a similar phenomenon occurs. In the present case,

the cavity behaves as a resonant subspace, producing a

couple of vortexes of energy flow at specific frequencies.
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CHAPTER IV

CONCLUSIONS

4.1 Remarks on the Mathematical Method

The least square error method is found to be quite

successful for solving the radiation and diffraction

problems. The flexibility of this method allows it to

handle the complex shape of a diaphragm or a diffracting

object. This was shown in the radiation and the diffraction

problems by a concave dome, where the boundary condition was

given on the dome surface and on the opening of the cavity.

Following are the interesting techniques employed in the

application of this method to the preceding problems, which

worked quite well in improving the accuracy of the results:

1. The most appropriate point was chosen as the origin of

the coordinates.

2. The boundary conditions were given on the imaginary

surface as well as on the radiator surface.

*3. New types of boundary conditions were used, which were

systematically treated in the same way as the Dirichiet

and Neumann boundary conditions.
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The counterpart of this method is the finite element

method. The advantages and disadvantages of the two

methods are:

1. In this method, the sound field is expressed as a finite

number of terms, each of which satisfies the wave

equation. Then, the error is concentrated on the

boundary surface. This may simpify the evaluation of

errors. In the finite element method, sources of error

exist both on the boundary surface and in the field.

2. In this method, one must be aware of the nonuniqueness

problem when he deals with a sound field including the

origin. This must be avoided by a proper choice of the

boundary surface. Normally, the finite element method

does not have this kind of problem for radiation and

-i.ffraction problems.

3. This method is closer to the analytical method, giving

better understanding of the phenomenon.j

4. The largest deficiency of this method lies in the nature

of the spherical Bessel and Neumann functions. One must

1Wi. very large and very small numbers at the same

time for small argument of these functions. The finite

element method usually does not have this kind of

problem.
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4.2 Summary of Results

The main purpose of this study was to investigate the

difference of radiation and diffraction phenomena due to the

difference of the diaphragm shape. Using the least square

error method, several important results were obtained, which

may be summarized as follows:

1. The convex and concave domes have contrasting radiation

and diffraction phenomena.

2. The convex dome becomes more inefficient as a radiator

as H/A increases. The concave dome is more efficient for

higher 11/A in the range normally used for a loudspeaker.

3. The geometrical approximation inethod gives a good

estimation of the response of the convex dome in the

high-frequency region. It is a rough estimation for the

concave dome in the same region.

4. The radiation resistance of the convex dome is quite

smooth. The radiation resistance of the concave dome

has a large peak at its first cavity resonance.

5. The radiation mass of the concave dome is equal to the

sum of the mass of the fluid inside the cavity and the

radiation mass of the flat piston with the same radius.

6. The radiation resistance curve closest to the +6dB/oct.

line is obtained by a concave dome with H/A less than

0.5.

7. The location of the sound after the equalization of the

pressure response exists at the top of the convex dome

and slightly behind Lhe opening of the cavity of the
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concave dome.

8. The convex dome has a wider directivity pattern than the

flat piston or the concave dome. N~either of them has

any zero pressure angle, and they have similar

directivity patterns in the high-frequency region.

9. The representation of sound field by the energy flow was

found to be very powerful in understanding the radiation

and diffraction phenomena.

10. The convex dome diffracts the sound of the concentric

ring source much more than the concave done does.

11. The results indicate that a cone-type woofer may

diffract the sound emitted from a tweeter sufficiently

to produce a discernible amplitude-modulated distortion.4

12. In the low- to mid-frequency region, the convex dome

widens the directivity patterni of the ring source,

whereas the concave dome works in the opposite way.

13. The existence of vortexes of the energy flow -,n the

resonant subspace was observed, and it was explained as

the result of interaction between different modes.
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4.3 Future Work

The results obtained so far are rather basic knowledge

about the radiation and diffraction phenomena. For further

information for the improvements of a loudspeaker, more

practical aspects of the loudspeaker should be taken into

account in the calculation. The following is recommended as

future work.

4.3.1 Modal Vibration of the Diaphragm

The high end of the reproducing range of an actual

loudspeaker is limited, mainly by the modal vibration of the

diaphragm rather than the acoustical reason. The assumption

of piston-like motion of the diaphragm is then not so

preferable to discuss the responses in the high-frequencyI

region of the loudspeaker. The velocity distribution of the

diaphragm at its modal vibration can be obtained either by a

measurement or by a theoretical calculation. Applying this

velocity distribution into Eq. (2.6), the modal vibration is

easily taken into account in the present method.

4.3.2 Diaphragm Shape other than a Dome.

A cone-type londspeaker usually has a straight cone

with a dome-type dust cap at its center. In this case, the

concave deme is not really a good approximation of the cone-

type loudspeaker diaphragm. In order to investigate the

radiation or the diffraction by the cone diaphragm, an exact

shape must be considered, especially in the high-frequency
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region. As was mentioned in Section 4.1, the present method

does not necessarily depend on the dome shape. When the

present method is applied to the diaphragm shape other than

the convex or the concave dome, it is recommended to choose

the center of a sphere as the origin of the coordinate,

where the portion of the sphere represents the shape of the

diaphragm most effectively.

Calculations of the characteristics of some kinds of

diaphragm shapes will give the general knowledge about the

relation between the diaphragm shape and several important

responses such as the on-axis pressure response), radiation

impedance, and directivity pattern. The interpretation of

this relation will yield information about the "best" shape

of the loudspeaker diaphragm, which may be different for

different purposes. It is needless to say that, in the

process of the evaluation of the characteristics, the '
psychological aspects of them must be taken into account.

4.3.3 Three~-Dimensional Problem

The vibration of a diaphragm with radial modes is

considered less effective on most of the radiation

characteristics. Hence, the assumption of the axisymmetry

of the sound field seems reasonable. When one discusses the

diffraction problem, however, he should be able to deal with

the problem as a three-dimensional case. The process to

extend the present two-dimensional program to a three-

dimensional program is rather a straightforward task. The
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problems one may encounter are related to the limitation of

the memory size of the central processing unit of a computer

and the computation time. These limitations may be overcome

by a large computer system and improved algorithms that are

now available. The results will bring some more important

knowledge about the diffraction phenomenon.



134

APPENDIX A

DERIVATION OF EQUATION (2.12) FROM EQUATION (2.11)

The condition that the variation of the functional

defined by Eq. (2.9) is zero for all an, n-O, 1, . • ., N

is the necessary and sufficient condition for the validity

of Eq. (2.12). This is proved as follows:

N NNIA
f n= an() aiji(•) - f (C)}dS . (A.1)

S ni nn1-

Then,

T N a*T*() - f (*)}dS3a = mm S n0

and

f T ) {Z a ni' (C) - f(�)}dS (fa . (A 3
3a n-O mm S

Hence,

=i ý 6m+ 6 2 Re{ (-!J--) 6 a} (A.4)

m m

In order for 6J to be zero for arbitrary 6a , Eq. (A.2) and
m

equivalently Eq. (A.3) must be zero. Rewriting Eq. (A.3),

one obtains Eq. (2.12) [assuming q(C)- 1.0 for simplicity].

IS n-0 n nJd
S

m 0, 1 .. . , N . (A.5)

II
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APPENDIX B

ANOTHER SOLUTION TO RADIATION

PROBLEM FROM A CONVEX DOME

Another solution rather than the one discussed in

Section 2.2.3 is possible. The details of this method and

¶ its deficiencies are discussed here.

The sound field is expressed in terms of the

spherical Hankel functions and Legendre functions with the

origin at 0 in Figure 2.1:

N
p(r',e') = Y a2nh2n(kr')P2n(cose') , (B.1)

n=0

where only the even orders of terms are used because of the

symmetry of the sound field. The normal velocity

distribution u (e) is obtained by differentiating Eq. (B.1)
n

in terms of r such as

ur (B.2)-- - ar' Dr Do,7 + r-
n

The relationship among r', e', r, and 0 are given by

r -2 r + - 2rz cose (B.3)
0 0

and

(rcosO - z)tanO' = rsine , (B.4)

where



136

zo Rcoseo (B.5)

From Eqs. (B.3) and (B.4), one obtains

ar '
- (r - z cosO)/r' - cos(O' - e) (B.6)

and

- - sin(e' - 0)/r' . (B.7)

Substitution of Eqs. (B.6) and (B.7) into Eq. (1.2) gives

N
u_(0) Y- a 2n[kh2n(kr')P2n(cos0')cos(O' - 0)
n n=O

+ h2n (kr')Pn (cos0')sinO'sin(; - 0)/r'] . (B.8)

Now, T2n(e) and f(0) are defined such as

2n(6) = [kh 2 (kr')P2 (Cos0')

+ h (kr')P' (COS0')sin8'sin(0' - 0)/r'] (1.9)
2n 2ncoe

and

f(e) = U cose. (B.10)

Then, the unknown coefficients an, n 0 0, 1, . . ., N are

obtained by solving (N+1) simultaneous equations:

N 60 2

S2[ f 2m() 2n (0)2TrR sin(0)d0]
n-0

0

= J • 2m(O)Ucos(0)2rTR sin(O)d0

0

m 0, 1, 2, . ,N (B.11)
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This method looks simple because it does not require

the introduction of the imaginary surface. But it was found

that this method has two basic problems. Firstly, the

convergence of Eq. (B.8) to Eq. (B.IO) is very slow. This

is because the origin 0 is not suitable for the expansion of

sound field in the form of Eq. (B.1). For the radiation

problem from a portion of a sphere, it seems reasonable to

choose a coordinate system with its origin at the center of

the sphere. Secondly, the argument kr' becomes small near

the z-axis for small H/A ratio. The reil and imaginary

parts of the spherical Hankel function become very small

and very large, respectively, for small argument when the

order n become large. This causes the underflow and

overflow problem in the process of numerical computation,

This nature of the spherical Hankel function prohibits from

taking higher order of n when one tries to have good

approximation of Eq. (B.8) to Eq. (B.11).

*1
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APPENDIX C

NONEXISTENCE AND NONUNIQUENESS PROBLEMS

OF A SERIES EXPANSION OF THE SOUND FIELD

i. Radiation From a Sphere

The nonexistence and nonuniqueness properties of the

* solution of the sound radiation problems were discussed

theoretically by Copley [11] and Schenck [12]. These

properties are discussed here focussing especially on the

series expansion of the sound field inside and outside the

sphere.

The velocity potential outside the sphere with only an

outgoing axisymmetric wave can be expressed by

N
(r,e) = • anhn(kr)Pn(Cose) (C.1)

n=O

Generally, the boundary condition is given either by the

pressure distribution or by the normal velocity distribution

such as P(0) or U(e) on the surface of the sphere.

Then,

N
P(6) P Pn Pn(Cosa) (C.2)

n=0

and

N
U(O) 1 u n P (cosO), (C.3)

n=O
where

tTr

Pn (n + 1/2) P(O)Pn(Cosa) sin(O)dG (C.4)

0

.............................................. ,'
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and

u = (n + 1/2) f U()Pn(Cose) sin(O)de . (C.5)

0

Comparing Eq. (C.1) with Eq. (C.2) or (C.3), one obtains

an /JwPh (kR) (C.6)
n n n

or

a = -u /kh'(kR) . (C..7)
n n n

Now, h (X) and h'(x) can never be zero for x R 0,n n

because the real part Jn(x) and imaginary part nn(x) of

hn(x), and their derivatives satisfy the following equation

[331:

n(X) .nn(X) - nn(X) • jn(x) = 1/x 2 (C.8)
in W-n' n n Wi

Thus, an is uniquely determined for any prescribed pressure

distribution or normal velocity distribution.

But, wben the velocity potential is expressed such as

(corresponding to the solution by Green's function [34])

N
p(r,e) = Y. anj (kR)h (kr)P (Cosa) , (C.9)

n=0

the unknown coefficient an is given by

a n n/jwoj(kR)h (kR) (C. 10)

n n n

4i

41i
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or

a= -u /kj (kR)h'(kR) . (C. I 1)
n n n n

In this case, the coefficient defined by Eq. (C.1O) or

Eq. (C.11) does not exist at the frequencies where Jn(kR)

0.

ii. Sound Field Inside a Sphere

The velocity potential inside a sphere is expressed by

N
a n J(kr)P n(cos) (C.12)

n=0

Corresponding to Eqs. (C.6) and (C.7), an is given by

a = pn/jiPjn (kR) (C.13)
n n f

or

an - -Un /kjn'(kR) . (C.14)

Then, the coefficient an obtained from Eq. (C.13) or

Eq. (C.14) is divergent at the characteristic frequencies,

where Jn(kR) 0 or j'(kR) - 0 if Pn or un is not equal to
n

zero, respectively. If Pn or un is equal to zero at the

•'• nth
characteristic frequencies, the n term must be excluded

from the series expansion. If it is included even at these

frequencies, the solution is not unique since an can take

any finite value without affecting the boundary condition.

This kind of nonuniqueness or nonconvergence problem may

happen if Eq. (C.12) is employed and if the boundary

condition is given on the surface of the sphere.

.. i.

, ,-- ,<. -, .-|,



141

APPENDIX D

ACOUSTIC CENTER OF A LINE SOURCE

The acoustic center of a line source which is lying in

the z direction between z = 0 and z is calculated as

follows.

The far-field on-axis pressure response of the source,
which is normalized to a point source with the same source

strength at z = 0, is given by

1

o 0

[sinkl 0+ i(l - coskl )]/kl

sin()e / ,(D.1)

where = ko0 /2.

The imaginary part of a minimum phase network having

the real part of Eq. (D.1) is obtained using the Hilbert

transform such as (using the integral formula in [35])

I(p f = sin2Q' dQ'

"m min 2Q1' Tr(Q' Q)

- (cos2Q - 1)/2Q2 (D.2)

Then, the total response of the minimum phase network is

given by

Pmin = sin(Q)e- Q/.(D 
3mm (D.3)
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The phase responst, 4allpasa defined by Eq. (2.46) is given

by the difference of phase responses of Eq. (D.1) and

Eq. (D.3) such as

Sal1pass k10  (D.4)

Dividing Eq. (D.4) by k, one obtains the acoustic center 1o

which is constant with respect to frequency.

S.
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